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Difference correlation can distinguish deterministic chaos from 1f/“-type colored noise

Tohru lkeguchi
Department of Applied Electronics, Faculty of Industrial Science and Technology, Science University of Tokyo,
2641 Yamazaki, Noda-shi, Chiba 278, Japan

Kazuyuki Aihara
Department of Mathematical Engineering and Information Physics, Faculty of Engineering, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
(Received 8 August 1996

Distinguishing deterministic chaos from colored noise with the power-law spectra or random fractal se-
guencegfractional Brownian motionsis one of the important problems in chaotic time series analysis. In this
paper, we describe a simple method for solving this problem, which seems easier than the other algorithms that
have already been proposed. In order to show how well our procedure works, first we apply a nonlinear
prediction to time series data, produced from both nonlinear dynamical systems and stochastic systems with the
power-law spectra. Next, we evaluate the prediction performance by calculating two kinds of correlation
coefficients between actual time series and predicted time series, which are called a conventional correlation
coefficient and a difference correlation coefficient. The conventional correlation coefficient is a usual correla-
tion coefficient between actual time series and predicted time series, and the difference correlation coefficient
is between first-difference time series obtained from actual time series and predicted time series. When the
one-step-ahead nonlinear prediction is applied to deterministic chaos without observational noise, not only
conventional correlation coefficients but also difference correlation coefficients are very high values, namely,
the coefficients take values almost 1.0 even if the number of data points is small. On the other hand, in the case
of 1/f“-type colored noise, although conventional correlation coefficients are relatively high values, difference
correlation coefficients turn out to be low values, even though the scaling exponent of the power spectrum
«a is large. This difference between conventional correlation and difference correlation can be a good criterion
for distinguishing deterministic chaos from colored noise with the power-law spectra. Finally, several real time
series data are analyzed in order to confirm the applicability of the proposed method.
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[. INTRODUCTION against prediction steps should decrease because of orbital
instability peculiar to chaotic dynamics. However, if the time
The identification of deterministic chaos and reconstrucseries is a realization of the random process, the prediction
tion of its dynamics are important research topics from theperformance is always bad and then it takes a value nearly
viewpoint of chaotic time series analysis. For this purposezero against any prediction step. When the time series is
the estimation of correlation dimensions of underlying pos-eriodic, it is fundamentally possible to predict in any pre-
sible attractors has been playing a central role; howevediction step and then the prediction performance versus the
there are several drawbacks in its application to real timegrediction step is almost flat.
series data. For example, the number of points for calculating Wales has shown that one can estimate the largest posi-
dimensions should be large enough to obtain reliable result$ive Lyapunov exponent by calculating the loss of informa-
Moreover, estimating such dimensions usually requires ongon or the slope of the decreasing propd#y. The results in
to extract a scaling exponent. This step of extracting theRef.[3] also imply the sensitivity of prediction performance
scaling region is sometimes dangerous, or at least unreliablen the dimensions of reconstructed attractors and therefore
because it can include an arbitrary choice for determiningone can find an optimal reconstructing dimension.
scaling regions. However, if the observed time series is produced from
Next, attention has been moved to Lyapunov spectrastochastic systems with the power-law spectra, bf,lthere
analysis, which gives us important information on orbitalis the same tendency that prediction performances decrease
instabilities peculiar to chaotic dynamics. However, there aravith increasing prediction steps, which is the same with de-
also several drawbacks with this analysis. For example, if aterministic chaos. Therefore, one cannot distinguish deter-
algorithm for estimating Lyapunov spectra is blindly applied ministic chaos from colored noise with the power-law spec-
to a time series that has a stochastic origin, it has been shovira if one extracts only the decreasing properties of
that spurious positive Lyapunov exponents would be obprediction performance against prediction steps. This prob-
tained[1,2]. lem is important because deterministic dynamical systems
Recently, nonlinear prediction has shown the ability tocan generate the power-law spectra and, on the other hand,
distinguish deterministic chaos from randomness and noisthere are also many natural stochastic phenomena that ex-
periodicity [3]. It was shown that prediction performance hibit the power-law spectra.
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Tsonis and Elsner showed how to distinguish determiniseulating both the conventional and the difference correlation
tic chaos from this kind of colored noise or random fractalcoefficients. Second, we analyze the prediction performance
sequencesfractional Brownian motion[5]. They describe in the case of noisy chaos in order to clarify the limit on the
that the semi-log and the log-log plots of the relation be-discrimination of deterministic chaos with noise fronf</
tween the prediction steps and the correlation coefficientsype colored noise. Finally, we show several results obtained
between actual time series and predicted time series shoftrom the analysis with our proposed method on real time
different properties if the prediction algorithm is applied to series data from real world systems.
these time series. If the time series is produced from deter-
ministic dynamical systems, the correlation coefficients
should decrease exponentially with prediction steps. In the

case of colored noise that has the power-law spectrum of the II. NONLINEAR PREDICTION AS A WAY
form 1/ or a random fractal sequence, the prediction accu-  OF DISTINGUISHING DETERMINISTIC CHAOS
racy is linearly decreasing in the log-log plots. Therefore, if FROM COLORED NOISE

one plots the prediction performance with the semi-log and WITH THE POWER-LAW SPECTRA

the log-log plots, these two time series can be distinguished, In this section, we make two kinds of time series: the first

because they show different properties. . S )
. . e ... is produced by deterministic dynamical systems and the sec-
Although their approach is promising on distinguishing on?j is coIoreg noise with the );l)ower—lawyspectra or random
chaos from colored noise with the power-law spectra or ran; e
dom fractal sequences, as Tsonis and Elesner have indicatfﬁrjc?ctal sequences. As examples of deterministic chaos we use
[5] that it may be difficult to extract the scaling law in the

case of analyzing real time series data because real time

e Hemon mapg 7], the Ikeda maj8], and the Bernoulli map
S[é)_]. The Haon map[7] is described by the equations

ries data are usually corrupted by noise, the number of data X1(t+1)=1+X,(t) —ax,(t)?,

points is limited, and the resolution of the data is finite. From

the viewpoint of real time series analysis, it is important to Xo(t+1)=bx(t), (2.2
clarify the limitation of the algorithms for discriminating

noisy chaotic dynamics from fi-type colored noise. wherea andb are the parameters and fixed at 1.4 and 0.3,

In this paper, we propose another method with the “dif-respectively. The second example is the lkeda ri@h
ference correlation” to distinguish deterministic chaos fromWhich is described by the equations
1/f*-type colored noise or random fractal sequences. Here, _ _ .
by the term of the difference correlation we mean the corre- X1(t+1)=q+b[x (1) cosh(t) =X, (t)sind(1)],

Iation coeffi_cients b_etween two time series, namely, the first- Xo(t+ 1) =b[ x,(1)sind(t) + X,(t)sind(t)], 2.2
difference time series obtained from actual time series and
predicted time seriefs]. where 0(t) = k— al[1+X1(t)?+x,(t)?] and the values of

In the following, first we apply nonlinear prediction to q, x, «, andb are fixed at 1.0, 0.4, 6.0, and 0.7, respec-
deterministic chaos and colored noise or random fractal seively. The third example is the Bernoulli m§g], described
guences and show the efficiency of discrimination by cal-as

X(1)+2B Y (1-2e)x(t)B+€, O=x(t)<3%
X(t+1)= 2.3
x(1)—2B " H1-2e)[1—-x(1)B]—¢, L=<x(t)=<1,

where the values oB and e are fixed at 2.0 and 103°  fractional Brownian motion is a realization of stochastic pro-
respectively. cess, which has the property that the power spectR{ii)

The reason why these dynamical systems are adopted ks the form ofP(f)=1/f¢, wherea is a constant. In order
that these examples have different characteristics on thejp produce the time series with the power spectrum of the
power spectra. Figure 1 shows the power spectra calculateghove form, first, we decide the sampling rate, the number of
for the dynamical systems described above. While the charjatg points, and the value of the scaling parameteand
acteristics of power spectra of the it map and the Ikeda generate a power spectrum with a form of’l/Then, phases

map are almost similar, for the Bernoulli map, the powergs o power spectrum are randomized by pseudorandom
spectrum has the fl"/-type form. Although therg are several p,mperg uniformly distributed of0,27]. Finally, applying
?'yr!am'ca'. systems with 17-type spectra, for mstanc“e, S the inverse Fourier transform to this phase-randomized
indicated in Ref[10], they are not considered to be “low- power spectrum, we obtain the time series that has tfe 1/

dimensional” dynamical systems. Therefore, we use the Ber:

noulli map as an example of a deterministic system that haBOWer spectrum with arbitrary values of [11]. For ex-

the power-law spectrurf]. ample, Brownian motions are the case witk-2. Any time

Next we numerically produce f9-type colored noise or S€ries with a 1/ property with arbitrarya can also be ob-
random fractal sequences. A random fractal sequence or {@ined by integrating the realization of Brownian motions
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1 ' ' even if the observed time series are contaminated by additive

uncorrelated nois¢6]. Let us consider the state space in
which the trajectory of the attractor is reconstructed and a
10° point, whose future behavior will be predicted, denoted by
vt . A set of neighbors of the poirt;, which are designated
o'l by vy, (i=1,2,...,M), are searched from all points on the
8 reconstructed attractor. The selected neighbors are sorted in
<, ascending order, namely, is the nearest neighbor af
0 and so on. Aftelp time stepspy, is mapped Wy, +p-
o Then we estimater. , by
107k
M
10-4 . ) vTer:iZ:l W(vkiivT)vki+p1 (24)
107° 107 i 107" 10°
th ;,quency wherew( ) is a weighting function depending only on the
\ (a) the Hénon map distance betweenr andu, . For the sake of simplicity, we
10 use a simple form of the weighting function, that is, the
explicit form of the prediction algorithm is described by
107 %": 1
Uy
- =1 o — o] ki 25
. v 2.
%10-2- T+p % 1
a
i=1 |Uki_UT|
107} RN o ' '.;"a ‘ B In applying this algorithm to real time series, singular cases
' '4' i with UT=0y due to, e.g., observational noise and finite reso-
! lution of data, can be avoided by introducing an exceptional
-4 1 1 . A
1010-3 0 o o rule that |fvT=.vkl, ther.1v.T+p=vkl+p.
Frequency For evaluating prediction performance, here we use two
(b) the Ikeda map measures that relate predicted time series to actual time se-
10" , , ries. The first is the correlation coefficient defined as
P —
10° ¢ 2, [2()-z ][z -2]
i<
1 I’1= 3 3 f (26)
107 F R —
5 > [2)—-zP\/ 2 [2(H) -2
z =1 =1
o -2
107F ~ . , —
wherez(t) andz(t) are actual and predicted time series,
" andz are the averages, alis the number of data points in
0 the predicted time series.
The second is the correlation coefficiant between the
107 : - first-difference time seriesAz(t)=z(t+1)—2z(t) and
107 107 107" 10° o :
Frequency Az(t)=z(t+1)—z(1),
(c) the Bernoulli map P/
FIG. 1. Examples of power spectra obtained from the dynamical .Zl [Az()=Az J[Az() ~AZ]
systems described in the texa) The Heon map,(b) the lkeda 2= = = ) (2.7
map, and(c) the Bernoulli map. The number of data points for —> ~ e
calculating Fourier transforms is 256 with the Hanning window. 21 [Az(t)—Az] 21 [Az(t)—Az]
i= i=

Dashed lines represent 95% confidence intervals.

with fractional times. This is why the time series is called awhere P’ is the number of data points in the time series
fractional Brownian motion or a random fractal sequence. Az(t). While the former coefficient, is called the conven-
As a nonlinear prediction algorithm, we use a kind oftional correlation coefficient, the latter coefficient is called
local linear approximation, which we call a modified versionthe difference correlation coefficient; for distinguishing de-
of the method of analogud42] and has high performance terministic chaos from colored noise with the power-law
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FIG. 2. Relation between correlation coefficients and the num- 401
ber of data points in a time series in the case that time series are £ gl . _
produced from deterministic chaos. The prediction step is fixed to § 0 +“‘+~§‘+~
one. The result of ; is shown in(a) andr, in (b). In these figures, § e
attractors are reconstructed in two-, three-, and two-dimensional g -20f Tl
state spaces, for the’Hen map(solid lines with circle¥ the lkeda —ao}

. . . *
map (dashed lines with plusgsand the Bernoulli map(dotted —sol
dashed lines with asteriskgespectively. The value of lag is fixed St
at 1 in each case. The estimated values,cdndr, are obtained by —8or
averaging over 100 trials. -100c__, . . . .

1 15 2 25 3
. . . a
spectra, the latter quantity, or the difference correlation co- (c) N=4,006

efficientr,, plays a very important role.

Figure 2 shows the prediction performances calculated on FIG. 3. Prediction performance evaluated on colored noise. The
dynamical systems. This is the plotsmgfandr, with vary- ~ nhumbers of data pointsl are (a) 128, (b) 512, and(c) 4096. The
ing the number of data points for making a database of preabscissa is the scaling parameteand the ordinate is the correla-
diction in the case of the one-step-ahead prediction. The firgton coefficients. Both conventional and difference correlation co-
half of the time series is used for making a database, angfficients are plotted in the same figure. Solid lines with circles
nonlinear prediction is applied to the second half in order td’n_dicate the conyentional correlat_ion coeh_‘ic_ients and dashed Iir_1es
evaluate the prediction performance. Therefore, the two corW'th plt_Jses the difference correlation c_oefﬁaents_. These correlation
relation coefficients are calculated with the second halves. coeflicients are the averaged value with 1000 trials.

Here we should mention that for the ken map and the
Ikeda map, the prediction performances are good for almostorse, especially for a smaller number of data points. This is
all trials with different initial conditions for producing time because when the number of data points is small, it happens
series. For the Bernoulli map, since the response exhibitthat the first half time series for making a database includes
intermittency, sometimes the prediction performance ionly the laminar phase or the bursting phase. Therefore, the
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prediction performance gets worse for fewer data pointscorrelation coefficients, but also difference correlation coef-
However, if the observed time series includes enough pointdicients take high valuetsee Fig. 2
namely, both the laminar phase and the bursting phase, the In Fig. 4, correlation plots are shown for the hte map
prediction efficiency would be good for the one-step-aheadnd 1f2 colored noise. Figure 5 shows the same results as in
prediction. Fig. 4, but they are represented as a time series. From these
In conclusion, in any cases where these examples of ddigures, we obtain more strong evidence that there are differ-
terministic chaos are analyzed, not only the conventionaént properties between deterministic chaos amé-fiype col-
correlation coefficients, but also the difference correlationored noise.
coefficients show high values for the short-term prediction In the case of deterministic chaos, we can see that actual
[3] because the assumption of the existence of deterministiand predicted values are almost distributed on the diagonal
dynamics is appropriate and the algorithm of nonlinear prefines as shown in Figs.(d) and 4b). However, in the case of
diction is suitable for extracting the deterministic dynamicscolored noise with the power-law spectra, although actual
from the time series. and predicted values used for the conventional correlation
Figure 3 shows the results of an application of the non-coefficient are almost on the diagonal liffég. 4(c)], for the
linear prediction to colored noise with the power-law spectrafirst-difference data of Fig.(d) they seem to be distributed
The values of the scaling parameterfor 1/f* noise are almost randomly. This tendency is also confirmed in Fig. 5.
varied from 1.0 to 3.0 with the regular intervAlk=0.25. In  In Figs. §a) and 3b), actual and predicted time series are
Fig. 3, the prediction step is fixed to one. From this result,plotted with time stept. In the case of the deterministic
we can read the two tendencies. chaos, since the assumption of the existence of deterministic
Even thougha is small, the conventional correlation co- dynamics is appropriate, predicted points are almost the
efficients exhibit relatively higher values. Whenincreases same as actual points; therefore it is impossible to distinguish
from 1.0 to 3.0, the conventional correlation coefficient con-solid and dashed lines. But in Figsichband Jd), although
verges to nearly 100%. The property of exhibiting high val-the slow trends of both actual and predicted times series look
ues of the conventional correlation coefficients in a shortsimilar [Fig. 5(c)], if the fine structures of movements are
term prediction is the same characteristic as for deterministiobserved, we can realize that the predicted time series just
chaos. If we calculate only this quantity, there is a possibilityfollow the actual time series after a one sf€jm. 5(d)]. This
that colored noise with the power-law spectrum might beis why the conventional correlation coefficients exhibit high
misinterpreted as deterministic chaos. performances and the difference correlation coefficients are
However, the difference correlation coefficients show aworse.
different property. Namely, they are not as high as the con- In conclusion, these properties on colored noise are dif-
ventional correlation coefficients, even wheris large. Here  ferent from the results of deterministic chaos; this shows that
we recall that for deterministic chaos, not only conventionalcolored noise with the power-law spectra can be distin-
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guished from deterministic chaos if nonlinear prediction is  lll. LIMITS ON DISCRIMINATING NOISY CHAOS
applied and the two evaluation criteria, namely, both the con- FROM COLORED NOISE
ventional and the difference correlation coefficients, are WITH THE POWER-LAW SPECTRA

computed. It should be noted that the results we show in this

section are obtained only with a one-step-ahead prediction; In the preceding section, we have shown that the differ-

this implies that we need not necessarily calculate predictioence correlation coefficient can be a good measure for dis-
performance in various prediction steps as for extracting théinguishing deterministic chaos from colored noise with the

scaling laws with the semi-log and the log-log plots. power-law spectra. However, observational noise is not con-
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sidered because it is necessary to clarify the discrimination
power under an idealized condition before applying to real 1007
data. 90f
For real time series, on the other hand, corruption by ob- gol
servational noise is unavoidable; therefore, the performance
of discrimination of noisy chaos from colored noise with the
power-law spectra is also important from the viewpoint of
handling real data. We should recognize that if a large
amount of stochastic noise is added to chaotic time series,
namely, the variance of the noise is relatively larger than that
of the chaotic time series, it is very difficult to distinguish
deterministic chaos from stochastic noise especially when
the amount of information on the observable is limited; for 10r
example, the number of data points is limited and the reso- Ot 15 20 2%
lution of each data is finite. This is always the case for ana- SN ratio[dB]
lyzing real data. (a) the Hénon map
Therefore, in this section, we analyze the prediction per-
formance of noisy chaos and discrimination characteristics 100r
and discuss where the limit is on the discrimination of noisy
deterministic chaos from stochastic time series with the
power-law spectra. 80f
Figure 6 shows the prediction performance when random 70t
noise with several levels is added to the dynamical systems.
In the figure, the prediction step is fixed to 1. The abscissa
shows the noise levels measured in the signal-to-noise ratio
and the ordinate the correlation coefficients. The value of 0
dB in the signal-to-noise ratio means that the total variances 3ot
of time series and additive random noise are the same level.
From this result, even if the signal-to-noise ratio is 10 dB,

701
60
50f

401

Correlation (%)

301
201

30 35 40

Correlation (%)
[+
=)

in which the original time series is heavily contaminated 10

with additive random noise, it is possibile to distinguish de- O s 0 3 3 35 40
terministic chaos from colored noise by the conventional SN ratio{dB]

correlation and the difference correlation coefficients, at least (b) the Ikeda map

for the Henon map and the Ikeda map. If we can obtain a
cleaner and longer time series, it is possible that the discrimi-
nant strategy of computing both the conventional and differ-
ence correlation coefficients is more effective. soy

80f

1001

701
IV. APPLICATION OF THE ALGORITHM
TO REAL TIME SERIES

60}
50}
In this section, we will show several results from analyz-
ing real time series with the proposed discrimination method.
The first example of real time series is data on squid giant
axon response to periodic pulses, which have already been 20f
reported to exhibit chaotic behavior with various analyses 1ol
[13,14), including nonlinear predictiofil5]. This time series . , .
can be a good example of a real time series that exhibits o 5 10
chaotic behavior. i
The second example is Lorenz-like chaos in a JNifar (c) the Bernoulli map
infrared (FIR) laser, which has been prepared as one of the
data sets at Santa Fe Institute Time Series Prediction Com- £ . prediction performance evaluated on noisy dynamical
petition (A.dap [16]. It is discussed that this time series can gystems ofa) the Haon map,(b) the Ikeda map, antt) the Ber-
be modeled by three coupled nonlinear ordinary differentiahoylli map. The abscissas show the levels of noise measured by the
equations and indicated that the structure of the attractor isignal-to-noise ratio in decibels and the ordinates are correlation
similar to the Lorenz attractor with a fractional correlation coefficients(%). In each figure, the solid lines with circles are for
dimension slightly larger than 2.0. the conventional correlation coefficients and the dashed lines with
The third example is the first differences of the monthlycrosses for the difference correlation coefficients. The number of
number of measles cases reported in New York City frontime series is 2048. 100 initial conditions are prepared for each case
1928 to 1963, which are also famous as the data used f@nd the averaged values are plotted.

401

Correlation (%)

30r

15 20 25 35 40
SN ratio[dB]
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FIG. 7. Results of analyzing real time series from the natural wddg.Squid axon response stimulated by periodic pulgby,
Lorenz-like NH;-FIR laser datgA.dat of Santa Fe Institute Prediction Competijioft) measles data from Sugihar@) annual sunspot
numbers,(e) New York index data, ané€f) electroencephalographiEEG) potentials from Rapp. Both conventional and difference corre-
lation coefficients are calculated for the one-step-ahead prediction. Abscissas represent embedding dimensions and ordinates correlation
coefficients. Solid lines with circles indicate the conventional correlation coefficients and dashed lines with crosses the difference correlation
coefficients.

nonlinear forecasting analysis by Sugihara and N@ly In The fifth and last examples are financial time series and
Ref.[3] it is reported that the measles data are possibly deelectroencephalographi€EG) potentials.
scribed by a two- to three-dimensional chaotic attractor. The financial time series is the New York index time se-

The fourth example is Wolfer's sunspot numbers, whichries. Although many analyses have been applied on financial
have long been used as one of the standard time series sinii@e series, it is considered that none of the tests are conclu-
Yule [17]. This time series is annual time series recordedsive regarding the existence of low-dimensional chaos for
from 1700 to 1993. complex behavior of financial time series.
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The EEG time series has also been one of the most inten- V. CONCLUSION
sively analyzed data from the viewpoints of nonlinear low-

dimensional chaos. Although previous results on EEGs by a We have applied a nonlinear prediction algorithm to time

dimensional analysis suggested possible evidence of IO\AE?QC?‘;gg’?ﬁ{ﬁ?ﬁgedoa%ﬂ:xtz deegter;mgrr"rsat‘ﬁ d%?r??‘fai?a?l gg{’
dimensional nonlinearityf18], recent reexaminations with P P

surrogate data sets do not necessarily imply a nonlinea(?']:'f?ncets - We trrl]ave shov;/nt_that the f(;l_lﬁer?[nct)e forrelatl?_n tco-
structure of low-dimensional cha$9]. The analyzed EEG giﬁiglrirr]wceotrime zericeosrrgti;nnedCf?gmlc"!\ec?ual t?mvéezgrie;rsahd
in this paper is the same as the one in R¢18,19. This . . . NI -

EEG is measured from the electrode of (18], predicted time series can be a good discrimination statistic

Results by the proposed algorithm are shown in Fig. 7. Irﬁ/efthgg\?vecrjestsgcTrTs:lc chaos and colored noise with the

Fig. 7, the variations of the conventional and the difference We also analyze the limitation of distinguishing noisy

correlation coefficients are shown with changing embeddin haos from colored noise and show that it is possible that
dimensions. From these results, we can read the folIowin% S . P .
) ven though deterministic chaos is corrupted by a relatively
tendencies. X . 2
large amount of observational noise, the deterministic chaos

The results shown in Figs.(@-7(c) are very similar to can be distinguished from stochastic noise because the com-

those of typical nonlinear dynamical systems; not only th ination of discriminant statistics, the conventional correla-
conventional correlation coefficients, but also the differenci\lt.) . . ' . -
ion coefficients, and the difference correlation coefficients

correlation coefficients take high values. It is worth noting hows the different property and therefore can be a qood
here that these results are in good agreement with those o oW P property ; . 9
fiterion. It is important in the future to investigate this

tained in previous analyses, namely, these time series arg . : S
considered to be low-dimensional chdd8—16,3. method from other view points, for example, how discrimi-

For the annual sunspot numbers, it is seen that the co 1ant performance is affected by the length of time series or

ventional correlation coefficients are relatively high values, he_resolunon of data points, and to give a theoretical expla-
but the difference correlation coefficients are low. Althoughnat'on'
the results show_n here are only those obtained for the one- ACKNOWLEDGMENTS
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