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Difference correlation can distinguish deterministic chaos from 1/fa-type colored noise
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Distinguishing deterministic chaos from colored noise with the power-law spectra or random fractal se-
quences~fractional Brownian motions! is one of the important problems in chaotic time series analysis. In this
paper, we describe a simple method for solving this problem, which seems easier than the other algorithms that
have already been proposed. In order to show how well our procedure works, first we apply a nonlinear
prediction to time series data, produced from both nonlinear dynamical systems and stochastic systems with the
power-law spectra. Next, we evaluate the prediction performance by calculating two kinds of correlation
coefficients between actual time series and predicted time series, which are called a conventional correlation
coefficient and a difference correlation coefficient. The conventional correlation coefficient is a usual correla-
tion coefficient between actual time series and predicted time series, and the difference correlation coefficient
is between first-difference time series obtained from actual time series and predicted time series. When the
one-step-ahead nonlinear prediction is applied to deterministic chaos without observational noise, not only
conventional correlation coefficients but also difference correlation coefficients are very high values, namely,
the coefficients take values almost 1.0 even if the number of data points is small. On the other hand, in the case
of 1/f a-type colored noise, although conventional correlation coefficients are relatively high values, difference
correlation coefficients turn out to be low values, even though the scaling exponent of the power spectrum
a is large. This difference between conventional correlation and difference correlation can be a good criterion
for distinguishing deterministic chaos from colored noise with the power-law spectra. Finally, several real time
series data are analyzed in order to confirm the applicability of the proposed method.
@S1063-651X~97!10403-2#

PACS number~s!: 05.45.1b, 02.60.2x
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I. INTRODUCTION

The identification of deterministic chaos and reconstr
tion of its dynamics are important research topics from
viewpoint of chaotic time series analysis. For this purpo
the estimation of correlation dimensions of underlying p
sible attractors has been playing a central role; howe
there are several drawbacks in its application to real t
series data. For example, the number of points for calcula
dimensions should be large enough to obtain reliable res
Moreover, estimating such dimensions usually requires
to extract a scaling exponent. This step of extracting
scaling region is sometimes dangerous, or at least unrelia
because it can include an arbitrary choice for determin
scaling regions.

Next, attention has been moved to Lyapunov spec
analysis, which gives us important information on orbi
instabilities peculiar to chaotic dynamics. However, there
also several drawbacks with this analysis. For example, i
algorithm for estimating Lyapunov spectra is blindly appli
to a time series that has a stochastic origin, it has been sh
that spurious positive Lyapunov exponents would be
tained@1,2#.

Recently, nonlinear prediction has shown the ability
distinguish deterministic chaos from randomness and n
periodicity @3#. It was shown that prediction performanc
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against prediction steps should decrease because of o
instability peculiar to chaotic dynamics. However, if the tim
series is a realization of the random process, the predic
performance is always bad and then it takes a value ne
zero against any prediction step. When the time serie
periodic, it is fundamentally possible to predict in any pr
diction step and then the prediction performance versus
prediction step is almost flat.

Wales has shown that one can estimate the largest p
tive Lyapunov exponent by calculating the loss of inform
tion or the slope of the decreasing property@4#. The results in
Ref. @3# also imply the sensitivity of prediction performanc
on the dimensions of reconstructed attractors and there
one can find an optimal reconstructing dimension.

However, if the observed time series is produced fro
stochastic systems with the power-law spectra, or 1/f a, there
is the same tendency that prediction performances decr
with increasing prediction steps, which is the same with
terministic chaos. Therefore, one cannot distinguish de
ministic chaos from colored noise with the power-law spe
tra if one extracts only the decreasing properties
prediction performance against prediction steps. This pr
lem is important because deterministic dynamical syste
can generate the power-law spectra and, on the other h
there are also many natural stochastic phenomena tha
hibit the power-law spectra.
2530 © 1997 The American Physical Society
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55 2531DIFFERENCE CORRELATION CAN DISTINGUISH . . .
Tsonis and Elsner showed how to distinguish determin
tic chaos from this kind of colored noise or random frac
sequences~fractional Brownian motion! @5#. They describe
that the semi-log and the log-log plots of the relation b
tween the prediction steps and the correlation coefficie
between actual time series and predicted time series s
different properties if the prediction algorithm is applied
these time series. If the time series is produced from de
ministic dynamical systems, the correlation coefficie
should decrease exponentially with prediction steps. In
case of colored noise that has the power-law spectrum o
form 1/f a or a random fractal sequence, the prediction ac
racy is linearly decreasing in the log-log plots. Therefore
one plots the prediction performance with the semi-log a
the log-log plots, these two time series can be distinguish
because they show different properties.

Although their approach is promising on distinguishi
chaos from colored noise with the power-law spectra or r
dom fractal sequences, as Tsonis and Elesner have indic
@5# that it may be difficult to extract the scaling law in th
case of analyzing real time series data because real tim
ries data are usually corrupted by noise, the number of d
points is limited, and the resolution of the data is finite. Fro
the viewpoint of real time series analysis, it is important
clarify the limitation of the algorithms for discriminatin
noisy chaotic dynamics from 1/f a-type colored noise.

In this paper, we propose another method with the ‘‘d
ference correlation’’ to distinguish deterministic chaos fro
1/f a-type colored noise or random fractal sequences. H
by the term of the difference correlation we mean the co
lation coefficients between two time series, namely, the fi
difference time series obtained from actual time series
predicted time series@6#.

In the following, first we apply nonlinear prediction t
deterministic chaos and colored noise or random fractal
quences and show the efficiency of discrimination by c
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culating both the conventional and the difference correlat
coefficients. Second, we analyze the prediction performa
in the case of noisy chaos in order to clarify the limit on t
discrimination of deterministic chaos with noise from 1/f a

type colored noise. Finally, we show several results obtai
from the analysis with our proposed method on real ti
series data from real world systems.

II. NONLINEAR PREDICTION AS A WAY
OF DISTINGUISHING DETERMINISTIC CHAOS

FROM COLORED NOISE
WITH THE POWER-LAW SPECTRA

In this section, we make two kinds of time series: the fi
is produced by deterministic dynamical systems and the
ond is colored noise with the power-law spectra or rand
fractal sequences. As examples of deterministic chaos we
the Hénon map@7#, the Ikeda map@8#, and the Bernoulli map
@9#. The Hénon map@7# is described by the equations

x1~ t11!511x2~ t !2ax1~ t !
2,

x2~ t11!5bx1~ t !, ~2.1!

wherea andb are the parameters and fixed at 1.4 and 0
respectively. The second example is the Ikeda map@8#,
which is described by the equations

x1~ t11!5q1b@x1~ t !cosu~ t !2x2~ t !sinu~ t !#,

x2~ t11!5b@x2~ t !sinu~ t !1x2~ t !sinu~ t !#, ~2.2!

where u(t)5k2a/@11x1(t)
21x2(t)

2# and the values of
q, k, a, and b are fixed at 1.0, 0.4, 6.0, and 0.7, respe
tively. The third example is the Bernoulli map@9#, described
as
x~ t11!5H x~ t !12B21~122e!x~ t !B1e, 0<x~ t !< 1
2

x~ t !22B21~122e!@12x~ t !B#2e, 1
2 <x~ t !<1,

~2.3!
o-

the
r of

om

zed
1/

ns
where the values ofB and e are fixed at 2.0 and 10213,
respectively.

The reason why these dynamical systems are adopte
that these examples have different characteristics on t
power spectra. Figure 1 shows the power spectra calcul
for the dynamical systems described above. While the c
acteristics of power spectra of the He´non map and the Ikeda
map are almost similar, for the Bernoulli map, the pow
spectrum has the 1/f a-type form. Although there are sever
dynamical systems with 1/f a-type spectra, for instance, a
indicated in Ref.@10#, they are not considered to be ‘‘low
dimensional’’ dynamical systems. Therefore, we use the B
noulli map as an example of a deterministic system that
the power-law spectrum@9#.

Next we numerically produce 1/f a-type colored noise or
random fractal sequences. A random fractal sequence
is
ir
ed
r-

r

r-
s

a

fractional Brownian motion is a realization of stochastic pr
cess, which has the property that the power spectrumP( f )
has the form ofP( f )}1/f a, wherea is a constant. In order
to produce the time series with the power spectrum of
above form, first, we decide the sampling rate, the numbe
data points, and the value of the scaling parametera and
generate a power spectrum with a form of 1/f a. Then, phases
of the power spectrum are randomized by pseudorand
numbers uniformly distributed on@0,2p#. Finally, applying
the inverse Fourier transform to this phase-randomi
power spectrum, we obtain the time series that has thef a

power spectrum with arbitrary values ofa @11#. For ex-
ample, Brownian motions are the case witha52. Any time
series with a 1/f a property with arbitrarya can also be ob-
tained by integrating the realization of Brownian motio
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2532 55TOHRU IKEGUCHI AND KAZUYUKI AIHARA
with fractional times. This is why the time series is called
fractional Brownian motion or a random fractal sequence

As a nonlinear prediction algorithm, we use a kind
local linear approximation, which we call a modified versi
of the method of analogues@12# and has high performanc

FIG. 1. Examples of power spectra obtained from the dynam
systems described in the text:~a! The Hénon map,~b! the Ikeda
map, and~c! the Bernoulli map. The number of data points f
calculating Fourier transforms is 256 with the Hanning windo
Dashed lines represent 95% confidence intervals.
f

even if the observed time series are contaminated by add
uncorrelated noise@6#. Let us consider the state space
which the trajectory of the attractor is reconstructed an
point, whose future behavior will be predicted, denoted
vT . A set of neighbors of the pointvT , which are designated
by vki ( i51,2, . . . ,M ), are searched from all points on th
reconstructed attractor. The selected neighbors are sorte
ascending order, namely,vk1 is the nearest neighbor ofvT
and so on. Afterp time steps,vk1 is mapped tovk11p .

Then we estimatev̂T1p by

v̂T1p5(
i51

M

w~vki,vT!vki1p , ~2.4!

wherew( ) is a weighting function depending only on th
distance betweenvT andvki. For the sake of simplicity, we
use a simple form of the weighting function, that is, t
explicit form of the prediction algorithm is described by

v̂T1p5

(
i51

M
1

uvki2vTu
vki1p

(
i51

M
1

uvki2vTu

. ~2.5!

In applying this algorithm to real time series, singular cas
with vT5vki due to, e.g., observational noise and finite re
lution of data, can be avoided by introducing an exceptio
rule that ifvT5vk1, thenv̂T1p5vk11p .

For evaluating prediction performance, here we use t
measures that relate predicted time series to actual time
ries. The first is the correlation coefficientr 1 defined as

r 15

(
i51

P

@z~ t !2 z̄ #@ ẑ~ t !2 ẑ̄ #

A(
i51

P

@z~ t !2 z̄#2A(
i51

P

@ ẑ~ t !2 ẑ̄#2

, ~2.6!

wherez(t) and ẑ(t) are actual and predicted time series,z̄

and ẑ̄ are the averages, andP is the number of data points in
the predicted time series.

The second is the correlation coefficientr 2 between the
first-difference time seriesDz(t)5z(t11)2z(t) and
D ẑ(t)5 ẑ(t11)2z(t),

r 25

(
i51

P8

@Dz~ t !2D z̄ #@D ẑ~ t !2D ẑ̄#

A(
i51

P8
@Dz~ t !2D z̄ #2A(

i51

P8
@D ẑ~ t !2D ẑ̄#2

, ~2.7!

where P8 is the number of data points in the time seri
D ẑ(t). While the former coefficientr 1 is called the conven-
tional correlation coefficient, the latter coefficient is calle
the difference correlation coefficient; for distinguishing d
terministic chaos from colored noise with the power-la

al

.
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55 2533DIFFERENCE CORRELATION CAN DISTINGUISH . . .
spectra, the latter quantity, or the difference correlation c
efficient r 2, plays a very important role.

Figure 2 shows the prediction performances calculated
dynamical systems. This is the plots ofr 1 andr 2 with vary-
ing the number of data points for making a database of p
diction in the case of the one-step-ahead prediction. The fi
half of the time series is used for making a database, a
nonlinear prediction is applied to the second half in order
evaluate the prediction performance. Therefore, the two c
relation coefficients are calculated with the second halves

Here we should mention that for the He´non map and the
Ikeda map, the prediction performances are good for alm
all trials with different initial conditions for producing time
series. For the Bernoulli map, since the response exhib
intermittency, sometimes the prediction performance

FIG. 2. Relation between correlation coefficients and the nu
ber of data points in a time series in the case that time series
produced from deterministic chaos. The prediction step is fixed
one. The result ofr 1 is shown in~a! andr 2 in ~b!. In these figures,
attractors are reconstructed in two-, three-, and two-dimensio
state spaces, for the He´non map~solid lines with circles!, the Ikeda
map ~dashed lines with pluses! and the Bernoulli map~dotted
dashed lines with asterisks!, respectively. The value of lag is fixed
at 1 in each case. The estimated values ofr 1 andr 2 are obtained by
averaging over 100 trials.
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worse, especially for a smaller number of data points. Thi
because when the number of data points is small, it happ
that the first half time series for making a database inclu
only the laminar phase or the bursting phase. Therefore,
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FIG. 3. Prediction performance evaluated on colored noise.
numbers of data pointsN are ~a! 128, ~b! 512, and~c! 4096. The
abscissa is the scaling parametera and the ordinate is the correla
tion coefficients. Both conventional and difference correlation
efficients are plotted in the same figure. Solid lines with circ
indicate the conventional correlation coefficients and dashed l
with pluses the difference correlation coefficients. These correla
coefficients are the averaged value with 1000 trials.
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FIG. 4. Examples of correla-
tion plots for the dynamical sys-
tem and colored noise. Plotted i

~a! arez(t) and ẑ(t) of the Hénon

map, and in~b! Dz(t) andD ẑ(t)
of the Hénon map. The recon-
structed dimension is 2. Shown i
~c! and ~d! are the corresponding
correlation plots for colored noise
with a52.0. The reconstructed di
mension is 3. The abscissas are a
tual values and the ordinates a
predicted values.
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prediction performance gets worse for fewer data poin
However, if the observed time series includes enough po
namely, both the laminar phase and the bursting phase
prediction efficiency would be good for the one-step-ahe
prediction.

In conclusion, in any cases where these examples of
terministic chaos are analyzed, not only the conventio
correlation coefficients, but also the difference correlat
coefficients show high values for the short-term predict
@3# because the assumption of the existence of determin
dynamics is appropriate and the algorithm of nonlinear p
diction is suitable for extracting the deterministic dynam
from the time series.

Figure 3 shows the results of an application of the n
linear prediction to colored noise with the power-law spec
The values of the scaling parametera for 1/f a noise are
varied from 1.0 to 3.0 with the regular intervalDa50.25. In
Fig. 3, the prediction step is fixed to one. From this res
we can read the two tendencies.

Even thougha is small, the conventional correlation co
efficients exhibit relatively higher values. Whena increases
from 1.0 to 3.0, the conventional correlation coefficient co
verges to nearly 100%. The property of exhibiting high v
ues of the conventional correlation coefficients in a sho
term prediction is the same characteristic as for determin
chaos. If we calculate only this quantity, there is a possibi
that colored noise with the power-law spectrum might
misinterpreted as deterministic chaos.

However, the difference correlation coefficients show
different property. Namely, they are not as high as the c
ventional correlation coefficients, even whena is large. Here
we recall that for deterministic chaos, not only conventio
s.
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correlation coefficients, but also difference correlation co
ficients take high values~see Fig. 2!.

In Fig. 4, correlation plots are shown for the He´non map
and 1/f 2 colored noise. Figure 5 shows the same results a
Fig. 4, but they are represented as a time series. From t
figures, we obtain more strong evidence that there are dif
ent properties between deterministic chaos and 1/f a-type col-
ored noise.

In the case of deterministic chaos, we can see that ac
and predicted values are almost distributed on the diago
lines as shown in Figs. 4~a! and 4~b!. However, in the case o
colored noise with the power-law spectra, although act
and predicted values used for the conventional correla
coefficient are almost on the diagonal line@Fig. 4~c!#, for the
first-difference data of Fig. 4~d! they seem to be distribute
almost randomly. This tendency is also confirmed in Fig.
In Figs. 5~a! and 5~b!, actual and predicted time series a
plotted with time stept. In the case of the deterministi
chaos, since the assumption of the existence of determin
dynamics is appropriate, predicted points are almost
same as actual points; therefore it is impossible to distingu
solid and dashed lines. But in Figs. 5~c! and 5~d!, although
the slow trends of both actual and predicted times series l
similar @Fig. 5~c!#, if the fine structures of movements a
observed, we can realize that the predicted time series
follow the actual time series after a one step@Fig. 5~d!#. This
is why the conventional correlation coefficients exhibit hi
performances and the difference correlation coefficients
worse.

In conclusion, these properties on colored noise are
ferent from the results of deterministic chaos; this shows t
colored noise with the power-law spectra can be dis
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FIG. 5. Same as Fig. 4, bu
represented as the time series.~a!
and~b! are for the He´non map and
~c! and ~d! are for colored noise.
Solid lines with circles are actua
values and dashed lines wit
crosses predicted values.
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guished from deterministic chaos if nonlinear prediction
applied and the two evaluation criteria, namely, both the c
ventional and the difference correlation coefficients,
computed. It should be noted that the results we show in
section are obtained only with a one-step-ahead predict
this implies that we need not necessarily calculate predic
performance in various prediction steps as for extracting
scaling laws with the semi-log and the log-log plots.
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III. LIMITS ON DISCRIMINATING NOISY CHAOS
FROM COLORED NOISE

WITH THE POWER-LAW SPECTRA

In the preceding section, we have shown that the diff
ence correlation coefficient can be a good measure for
tinguishing deterministic chaos from colored noise with t
power-law spectra. However, observational noise is not c



tio
ea

ob
n
he
o
rg
rie
h
h
he
fo
s
na

e
tic
is
th

o
m
ss
ra
f
ce
v
B
ed
e
na
a
a

im
e

z
od
ian
e
e

ibi

th
o
an
tia
r
n

ly
om
f

ical

y the
tion
r
with
r of
ase

2536 55TOHRU IKEGUCHI AND KAZUYUKI AIHARA
sidered because it is necessary to clarify the discrimina
power under an idealized condition before applying to r
data.

For real time series, on the other hand, corruption by
servational noise is unavoidable; therefore, the performa
of discrimination of noisy chaos from colored noise with t
power-law spectra is also important from the viewpoint
handling real data. We should recognize that if a la
amount of stochastic noise is added to chaotic time se
namely, the variance of the noise is relatively larger than t
of the chaotic time series, it is very difficult to distinguis
deterministic chaos from stochastic noise especially w
the amount of information on the observable is limited;
example, the number of data points is limited and the re
lution of each data is finite. This is always the case for a
lyzing real data.

Therefore, in this section, we analyze the prediction p
formance of noisy chaos and discrimination characteris
and discuss where the limit is on the discrimination of no
deterministic chaos from stochastic time series with
power-law spectra.

Figure 6 shows the prediction performance when rand
noise with several levels is added to the dynamical syste
In the figure, the prediction step is fixed to 1. The absci
shows the noise levels measured in the signal-to-noise
and the ordinate the correlation coefficients. The value o
dB in the signal-to-noise ratio means that the total varian
of time series and additive random noise are the same le

From this result, even if the signal-to-noise ratio is 10 d
in which the original time series is heavily contaminat
with additive random noise, it is possibile to distinguish d
terministic chaos from colored noise by the conventio
correlation and the difference correlation coefficients, at le
for the Hénon map and the Ikeda map. If we can obtain
cleaner and longer time series, it is possible that the discr
nant strategy of computing both the conventional and diff
ence correlation coefficients is more effective.

IV. APPLICATION OF THE ALGORITHM
TO REAL TIME SERIES

In this section, we will show several results from analy
ing real time series with the proposed discrimination meth
The first example of real time series is data on squid g
axon response to periodic pulses, which have already b
reported to exhibit chaotic behavior with various analys
@13,14#, including nonlinear prediction@15#. This time series
can be a good example of a real time series that exh
chaotic behavior.

The second example is Lorenz-like chaos in a NH3–far
infrared ~FIR! laser, which has been prepared as one of
data sets at Santa Fe Institute Time Series Prediction C
petition ~A.dat! @16#. It is discussed that this time series c
be modeled by three coupled nonlinear ordinary differen
equations and indicated that the structure of the attracto
similar to the Lorenz attractor with a fractional correlatio
dimension slightly larger than 2.0.

The third example is the first differences of the month
number of measles cases reported in New York City fr
1928 to 1963, which are also famous as the data used
n
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FIG. 6. Prediction performance evaluated on noisy dynam
systems of~a! the Hénon map,~b! the Ikeda map, and~c! the Ber-
noulli map. The abscissas show the levels of noise measured b
signal-to-noise ratio in decibels and the ordinates are correla
coefficients~%!. In each figure, the solid lines with circles are fo
the conventional correlation coefficients and the dashed lines
crosses for the difference correlation coefficients. The numbe
time series is 2048. 100 initial conditions are prepared for each c
and the averaged values are plotted.
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FIG. 7. Results of analyzing real time series from the natural world.~a! Squid axon response stimulated by periodic pulses,~b!
Lorenz-like NH3-FIR laser data~A.dat of Santa Fe Institute Prediction Competition!, ~c! measles data from Sugihara,~d! annual sunspot
numbers,~e! New York index data, and~f! electroencephalographic~EEG! potentials from Rapp. Both conventional and difference cor
lation coefficients are calculated for the one-step-ahead prediction. Abscissas represent embedding dimensions and ordinates
coefficients. Solid lines with circles indicate the conventional correlation coefficients and dashed lines with crosses the difference c
coefficients.
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nonlinear forecasting analysis by Sugihara and May@3#. In
Ref. @3# it is reported that the measles data are possibly
scribed by a two- to three-dimensional chaotic attractor.

The fourth example is Wolfer’s sunspot numbers, wh
have long been used as one of the standard time series
Yule @17#. This time series is annual time series record
from 1700 to 1993.
e-

nce
d

The fifth and last examples are financial time series a
electroencephalographic~EEG! potentials.

The financial time series is the New York index time s
ries. Although many analyses have been applied on finan
time series, it is considered that none of the tests are con
sive regarding the existence of low-dimensional chaos
complex behavior of financial time series.
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The EEG time series has also been one of the most in
sively analyzed data from the viewpoints of nonlinear lo
dimensional chaos. Although previous results on EEGs b
dimensional analysis suggested possible evidence of
dimensional nonlinearity@18#, recent reexaminations with
surrogate data sets do not necessarily imply a nonlin
structure of low-dimensional chaos@19#. The analyzed EEG
in this paper is the same as the one in Refs.@18,19#. This
EEG is measured from the electrode of Oz @18#.

Results by the proposed algorithm are shown in Fig. 7
Fig. 7, the variations of the conventional and the differen
correlation coefficients are shown with changing embedd
dimensions. From these results, we can read the follow
tendencies.

The results shown in Figs. 7~a!–7~c! are very similar to
those of typical nonlinear dynamical systems; not only
conventional correlation coefficients, but also the differen
correlation coefficients take high values. It is worth noti
here that these results are in good agreement with those
tained in previous analyses, namely, these time series
considered to be low-dimensional chaos@13–16,3#.

For the annual sunspot numbers, it is seen that the c
ventional correlation coefficients are relatively high valu
but the difference correlation coefficients are low. Althou
the results shown here are only those obtained for the o
step-ahead prediction, it is hard to say whether or not
annual sunspot numbers are similar to those of typical
namical systems.

For the financial time series and EEG data, it is clea
seen that the results with the difference correlation coe
cients are significantly different from those of model d
namical systems, but they are similar to that of colored no
While the conventional correlation coefficients are very h
values in any reconstructing dimensions, the difference c
relation coefficients are very low. From these results, we
say that there is less of a possibility that these time series
produced from low-dimensional nonlinear dynamical s
tems.
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V. CONCLUSION

We have applied a nonlinear prediction algorithm to tim
series data, produced from both deterministic chaos and
ored noise with the power-law spectra or random fractal
quences. We have shown that the difference correlation
efficient or the correlation coefficient between firs
difference time series obtained from actual time series
predicted time series can be a good discrimination stati
between deterministic chaos and colored noise with
1/f a power spectrum.

We also analyze the limitation of distinguishing nois
chaos from colored noise and show that it is possible t
even though deterministic chaos is corrupted by a relativ
large amount of observational noise, the deterministic ch
can be distinguished from stochastic noise because the c
bination of discriminant statistics, the conventional corre
tion coefficients, and the difference correlation coefficie
shows the different property and therefore can be a g
criterion. It is important in the future to investigate th
method from other view points, for example, how discrim
nant performance is affected by the length of time series
the resolution of data points, and to give a theoretical exp
nation.
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